Vaccine Development

Recombinant subunit vaccines are attractive alternatives to inactivated, live-attenuated or split vaccines. In addition to their improved safety profile, it is usually possible to replace expensive cell cultures and/or logistically challenging production systems such as chicken eggs with more cost‑effective solutions. One major hurdle in the development of subunit vaccines is the identification of antigens or antigen domains that provide sufficient immunogenicity and protective efficacy. For new vaccines, these must be identified by rational antigen selection, expression screening and immunization studies. All of these essential steps in vaccine development have been performed by Fraunhofer IME in the context of projects focusing on veterinary vaccines (Infectious bursal disease virus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus) or human subunit vaccines (Plasmodium falciparum, Vibrio cholerae, Mycobacterium tuberculosis) using our panel of plant-based and microbial expression systems.

Selected Publications

Spiegel, H., Boes, A., Fendel, R., Reimann, A., Schillberg, S., Fischer, R., 2017. Immunization with the malaria diversity-covering blood-stage vaccine candidate plasmodium falciparum apical membrane antigen 1 DiCo in complex with its natural ligand PfRon2 does not improve the in vitro efficacy. Frontiers in Immunology 8. http://doi.org/10.3389/fimmu.2017.00743

Boes, A., Spiegel, H., Kastilan, R., Bethke, S., Voepel, N., Chudobová, I., Bolscher, J.M., Dechering, K.J., Fendel, R., Buyel, J.F., Reimann, A., Schillberg, S., Fischer, R., 2016. Analysis of the dose-dependent stage-specific in vitro efficacy of a multi-stage malaria vaccine candidate cocktail. Malar J 15. http://doi.org/10.1186/s12936-016-1328-0

Boes, A., Spiegel, H., Edgue, G., Kapelski, S., Scheuermayer, M., Fendel, R., Remarque, E., Altmann, F., Maresch, D., Reimann, A., Pradel, G., Schillberg, S., Fischer, R., 2015. Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate PfAMA1 produced in Nicotiana benthamiana and analysis of growth inhibitory responses in rabbits. Plant Biotechnol J 13, 222–234. http://doi.org/10.1111/pbi.12255

Beiss, V., Spiegel, H., Boes, A., Scheuermayer, M., Reimann, A., Schillberg, S., Fischer, R., 2015. Plant expression and characterization of the transmission-blocking vaccine candidate PfGAP50. BMC Biotechnology 15, 108. http://doi.org/10.1186/s12896-015-0225-x

Beiss, V., Spiegel, H., Boes, A., Kapelski, S., Scheuermayer, M., Edgue, G., Sack, M., Fendel, R., Reimann, A., Schillberg, S., Pradel, G., Fischer, R., 2015a. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein. Biotechnol. Bioeng. 112, 1297–1305. http://doi.org/10.1002/bit.25548

Voepel, N., Boes, A., Edgue, G., Beiss, V., Kapelski, S., Reimann, A., Schillberg, S., Pradel, G., Fendel, R., Scheuermayer, M., Spiegel, H., Fischer, R., 2014. Malaria vaccine candidate antigen targeting the pre-erythrocytic stage of Plasmodium falciparum produced at high level in plants. Biotechnol J 9, 1435–1445. http://doi.org/10.1002/biot.201400350

Taghavian, O., Spiegel, H., Hauck, R., Hafez, H.M., Fischer, R., Schillberg, S., 2013. Protective oral vaccination against Infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS one. Online journal 8, Art.e83210, 12. http://doi.org/10.1371/journal.pone.0083210