A user-friendly program of a TK-TD model to link variable exposure to effects on survival of aquatic organisms

Judith Klein1, Udo Hommen2, and Rüdiger Schultz3

1,3Faculty of Mathematics, University of Duisburg-Essen
1,2Fraunhofer Institute for Molecular Biology and Applied Ecology
judith.klein@ime.fraunhofer.de

Motivation
Exposure of aquatic organisms to plant protection products in edge-of-field waters can be highly dynamic over time. Toxikokinetik-toxodynamic models, e.g., the General Unified Threshold Model of Survival (GUTS) [Jager et al., 2011], offer a mechanistic way to predict effects of such dynamic exposures patterns. We aim to provide a user-friendly program of GUTS covering all necessary steps for its use in risk assessment, i.e. as a tier 2 tool according to the aquatic guidance document [EFSA PPR Panel, 2013]:

1. Calibration of the substances and species specific parameters using results of ecotoxicological tests
2. Validation of the calibrated model based on results of additional tests
3. Prediction for exposure scenarios not tested

Step 1: Calibration
Depends on available experimental data sets:

If e.g. a Bioconcentration Study OECD 305 is available, uptake and elimination rates can be used to describe the TK part while the TD parameters are calibrated using ecotoxicological test data.

Else TK and TD parameters are calibrated based e.g. on a standard Acute Toxicity Fish Test OECD 203.

Step 2: Validation
The fitted model should be tested on a data set not used for calibration, e.g. a toxicity test with different exposure profile (e.g. pulsed instead constant exposure).

Quality of the correspondence of data and predictions are provided by

- χ^2-Test $\chi^2 = \sum_{i=1}^{n} \left(\frac{|C_i-O_i|}{E_i} \right)^2$
- Model Error $\epsilon = 100 \cdot \sqrt{\frac{1}{\sum_{i=1}^{n} C_i} \sum_{i=1}^{n} (C_i-O_i)^2}$
- Coefficient of Determination $r^2 = \left(\frac{\sum_{i=1}^{n} (C_i-O_i)^2}{\sum_{i=1}^{n} O_i^2 - \frac{1}{n} \sum_{i=1}^{n} C_i^2} \right)^2$
- Model Efficiency $EF = 1 - \frac{\sum_{i=1}^{n} (C_i-O_i)^2}{\sum_{i=1}^{n} O_i^2}$
- Scaled Root Mean Squared Error $SRMSE = \frac{1}{n} \sqrt{\sum_{i=1}^{n} (C_i-O_i)^2}$
- Scaled Total Error $STE = \frac{\sum_{i=1}^{n} |C_i-O_i|}{\sum_{i=1}^{n} O_i}$

Step 3: Prediction
Simple or complex exposure pattern e.g. FOCUS scenarios can serve as input to predict internal concentration, hazard and survival over time. Example 1: Pulsed Exposure (14 d) $C_{\text{max}} = 64$, Safety Margin 11.3:

Example 2: FOCUS model prediction for exposure in a ditch (483 d) $C_{\text{max}} = 64$, Safety Margin 14.8:

Example 3: FOCUS model prediction for exposure in a stream (485 d) $C_{\text{max}} = 59$, Safety Margin 17:

Summary
GUTS was implemented in a program including different calibration and validation options as well as options to use the outputs of commonly used exposure models (e.g., FOCUS step 3 and 4) to predict the effects of time variable exposure on survival of organisms (tier 3: [EFSA PPR Panel, 2013]). The GUTS model implementation was verified by means of example data for fish published by [Ashauer et al., 2010] and [Ducrot et al., 2013].

Outlook
It is planned to expand the model to be able to consider variation within and between ecotoxicological tests. It is also intended to integrate the option to use the model to support designing of experiments (identifying a realistic worst case exposure pattern for testing or a pattern which is best to reduce model uncertainty). The program will be made freely available after testing and finalization of the documentation according to the Good Modelling Practice Opinion [EFSA PPR Panel, 2014].