Mat nnn **Polymers and their toxicity to algae** lessons learned from a comparative study.

Karsten Schlich¹, Ruben Schlinkert¹, Carmen Wolf², Wendel Wohlleben³, Kerstin Hund-Rinke¹

¹Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 57392 Schmallenberg, Germany, ² Institute for Energy and Environmental Technology. V. (IUTA), 47229 Duisburg, Germany, ³ BASF SE, 67056 Ludwigshafen, Germany

kerstin.hund-rinke@ime.fraunhofer.de

Ч— • —

C

+

σ

t <

σ

Polymer particles are used in various applications, but can also be intermediates in advanced manufacturing (e.g. additive

- manufacturing) \rightarrow heterogeneous group of chemicals.
- Ecotoxicity of nanomaterials has been intensively investigated, information on toxicity of larger particles including those consisting of solid, insoluble polymers is still limited.

> Investigation of eight non-reactive polymers differing in their chemical identity, polymer backbone, aromaticity, crosslinking degree, size (0.3 –270 µm), surface area (0.03 – 15 m²/g) and dispersibility regarding their ecotoxicity to algae (Raphidocelis subcapitata; length: 8 – 14 µm, \emptyset 2 – 3 µm) in the growth test (OECD TG 201).

Materials

Material short name	Supplier	State of material	Average primary particle size	Surface area (BET) [m ² /g]	Reactivity DMPO ⁷
PMMA ¹	Polysciences	Dispersion (2.5 wt%)	Ø 0.3 μm ⁵	15.0	n.d. ⁸
PA-6 ²	BASF SE	Powder	$arnothing$ 42.2 μ m 6	0.366	1.03
TPU_ester_arom ³	BASF SE	Powder	$arnothing$ 254 μm 6	0.027	1.02
TPU_ether_arom ³	BASF SE	Powder	$arnothing$ 246 μ m 6	0.030	1.28
TPU_ester_aliph ³	BASF SE	Powder	$arnothing$ 262 μ m 6	0.034	1.37
TPU_ether_aliph ³	BASF SE	Powder	$arnothing$ 267 μ m 6	0.033	n.d. ⁸
PU_binder_arom_1C ⁴	BASF SE	Powder	$arnothing$ 200 μ m 6	0.145	n.d. ⁸
PU_binder_arom_2C ⁴	BASF SE	Powder	$arnothing$ 201 μ m 6	0.159	n.d. ⁸

¹ poly(methylmethacrylate); ² polyamide; ³ ester or ether based thermoplastic polyurethane (TPU) with aromatic or aliphatic hydrocarbons; ⁴ polyurethane; ⁵ information by supplier; ⁶ particle size distribution determined using a Mastersizer 3000 (MV Hydro unit); Dx50 presented; ⁷ Sample to blank ratio; hydroxyl radical generation measured according to Shi et al. (2003a); ⁸ not determined.

Preparation of stock dispersion

- PA-6: mixing 100 mg + 50 mL of the OECD test medium and stirring with a magnetic bar.
- PMMA: 2 mL of the dispersion + 498 mL of the OECD test medium and gently stirring.

TPU, PU: 100 mg + 1000 mL OECD test medium + 25 µL Tween 40:and stirring with a magnetic bar.

Test design

- Growth inhibtion test with algae: OECD TG 201
- Test concentrations: 100, 10, 1, 0.1 mg/L
- Determination of algal biomass with *in-vitro* fluorescence assay
- Test algae: Raphidocelis subcapitata
- Microscopic determination of algal-particle interaction in a short-term assay ¹

Results and Discussion

- None of the materials showed toxic effects.
- Despite large variability in size (0.3–270 µm), condition (powder, dispersion), surface area $(0.03 - 15 \text{ m}^2/\text{g})$ no evidence that a particular size, state of material or surface area causes ecotoxicity.
- TPU, PU polymer particles could only be dispersed with Tween 40. Tween 40 coats materials \rightarrow no contact between algae and material \rightarrow false negative effect?
 - Similar dispersion effect with algal exudates (corresponding to 3×10^6 cells/mL = cell concentration at test end) \rightarrow Tween 40 simulates effects which can also occur in the environment!

D

Advantage of Tween 40 over algae exsudates: defined chemical composition.

hetero-agglomeration driving factor for ecotoxicity¹ Nanomaterials: Nano/micro-)sized polymer particles: no hetero-agglomeration \rightarrow agrees with lack of toxicity!

Conclusion

If there is no hetero-agglomeration, the probability of polymers being toxic seems to be low, unless they contain bioavailable toxic components.

> ¹ Hund-Rinke et.: Attachment efficiency of nanomaterials to algae as an important criterion for ecotoxicity and grouping. Nanomaterials 2020, 10, 1021.

Funding: BMBF InnoMat.Life GEFÖRDERT VOM (FKZ 03XP0216) Bundesministerium für Bildung und Forschung