Environmental grouping and read-across for nanomaterials and innovative materials – are PC-properties sufficient regarding green algae?

Kerstin Hund-Rinke¹, Karsten Schlich¹, Ruben Schlinkert¹, Carmen Wolf², Dana Kuehnel³

¹Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany, ² Institute for Energy and Environmental Technology. V. (IUTA), Duisburg, Germany, ³ Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany

Introduction

- Nanomaterials (NM) show variation in size, shape, crystalline structure, surface modifications.
 → Grouping and read-across can help that only a limited number of NM has to be tested.
- Grouping: NMs with similar properties form a group.
- Read-across: Within a group, a data gap might be filled in by read-across; must be justified scientifically (ECHA. 2017. Guidance on information requirements and chemical safety assessment Appendix R.6.1 for nanomaterials applicable to the Guidance on QSARs and Grouping of Chemicals).
- Challenge: Which properties are suitable indicators for effects and ecotoxicity? Suggestion of a selection of relevant parameters for green algae → SEG4nano (= <u>S</u>ophisticated <u>E</u>cotoxicological Grouping approach <u>fo(u)r nano</u>materials) (Kuehnel et al. 2019: NanoIMPACT 15:100173) Are these parameters also suitable as indicator for innovative materials with larger diameters?

Results for green algae

- For NMs whose toxicity is not based on the release of toxic ions (e.g. CeO₂, TiO₂), an criterion indicating toxicity to algae is extent of attachment (*Hund-Rinke et al. 2020: Nanomaterials 10(6):1021*) CeO₂
- Innovative material: micronized polyurethanes (D50 ≥ 200 µm): Significant attachment 6 very different materials (ether, ester, aromatic, aliphatic: different polymer backbones / different aromaticities, different crosslinking degrees) → 6 groups based on chemical identity.

<u>but</u>: no attachment, no toxicity on algae \rightarrow one group based on toxicity and attachment. Size of PU exceeds size of algae significantly (\neq NM). Size as only reason for "no toxicity" is less reliable (see Y₂O₃ below).

Y₂O₃:. Algae attach to large agglomerates (primary particle size Ø 32 nm; agglomerate size >> 100 μm) - growth is reduced - EC50 2.6 mg/L.

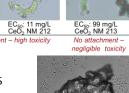
Justification of the criterion "attachment"

- Agglomeration of algae and particles can e.g. damage the cell or reduce the wavelengths required for growth of algae. "Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials": reduction of light by attachment = toxic effect (≠ reduction of light by turbidity).
- Surface properties of materials (e.g. reactivity) can be pronounced by a close contact of algae and particles (= by attachment).
- PC-parameters descriptive for attachment could not be identified and "attachment" has to be considered as new parameter for read-across regarding algae.

Conclusion

- ⇒ Grouping based on PC-parameters as listed in ECHA (2017) can result in an overestimation of differences. The additional criterion "attachment" can support the PC-parameters and can reduce testing for NMs and larger innovative materials which are not toxic due to the release of toxic ions.
- ⇒ Number of groups

PC-parameters > SEG4nano: not critical, but options for read-across reduced, more testing. PC-parameters < SEG4nano: more critical, groups do not reflect the different hazard.



CeO₂ NM attached to Rhaphidocelis subcapitata: extent of attachment is related to ecotoxicity (EC50)

EC₅₀: 8.5 mg/L CeO₂ NM 211

Agglomerate of Y₂O₃ with attached algae