Development of a Modified Screening Method for the Degradation of Polymers and Validation with ¹⁴Cradiolabelled Alginate

Julia Peters^{1,3}, Michael Hüben¹, Dieter Hennecke¹, Annika Jahnke^{2,3}, Andreas Schäffer³

¹ Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
² Department of Exposure Science, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
³ Institute for Environmental Research, RWTH Aachen University, Kackerstraße 10, 52072 Aachen, Germany
Contact: julia.peters@ime.fraunhofer.de

Introduction

The **fate of polymers** is mostly unknown. A fast screening method is urgently needed to obtain a **projection of the biodegradability** of polymers during polymer development. In order to address this issue, a **modified screening method** based on the OECD 301B guideline [1] with a high throughput of polymers has been developed. In comparison to the guideline test various parameters were changed and the set-up was simplified to ensure a quick assessment of the biodegradability.

Table 1: Modified screening method to determine polymer mineralisation.

Test parameters	Modified Screening Method	OECD 301B Test	
Test volume [ml]	50	800-3000	
Sewage sludge [g dry mass/L]	1-3 for water-soluble polymers 6 for solid polymers	1-3	
Incubation time [d]	10	28	
Sampling times	2	8	
Incubation system	Closed system	Flow-through system	
Analytical endpoint	Direct TOC-measurement of test volume	Indirect TOC-measurement by quantification of trapped CO ₂	

Figure 1: Modified screening method to determine polymer mineralisation.

Results & Discussion

Table 2: Comparison of the recovery in the modified screening test to the measured mineralisation in the OECD 301B test.

Substances	Recovery screening d0 [%]	Recovery screening d10 [%]	Mineralisation screening d10 [%]	Mineralisation OECD 301B Test d28 [%]
Sodium alginate	99.8	7.74	92.1	30.8
Carboxymethyl cellulose	103	75.7	27.3	30.5
Gum Arabica	98.4	30.0	68.4	84.8
Reference substance	104	4.97	99.0	91.6

- Comparable results between the two methods
 - Testing done in triplicates with a variation of less than 10 %
- Only significant difference for the results of sodium alginate
 - Screening results reproduced and no adsorption of the sodium alginate to the glass or the sludge observed

Figure 2: Comparison of different sewage sludge concentrations with Indian psyllium husks for the modified screening test.

- Testing of solid (non-soluble) polymers possible
 - Modified screening experiments with Indian psyllium husks successful
- Different sewage sludge concentrations tested for solid polymers
 - Day 10 results with a sewage sludge concentration of 3 g/L were
- Experimental error assumed, OECD 301B test will be redone
- Advantages of the screening method
 - Direct measurement of test volume
 - Saves time and space
 - Higher sample throughput possible
 - Prediction of degradation in OECD 301B possible

not valid

- Below the limit of quantification of the TOC-analyser
- Quantification of higher sewage sludge concentrations possible

Modified screening method can be used for a qualitative conclusion on the degradation for water-soluble and solid polymers.

Outlook

- Synthesis of the ¹⁴C-radiolabelled sodium alginate
- Validation of the modified screening method with ¹⁴C-radiolabelled sodium alginate

Acknowledgement - The study was funded by Fraunhofer and is part of the PREPARE project SeedPlus. Figures created with BioRender.

References [1] Organisation for Economic Co-operation and Development, "OECD guideline for testing of chemicals 301 - Ready Biodegradability," 1992.